Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.653
Filtrar
1.
Environ Sci Technol ; 58(16): 7217-7227, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38588505

RESUMO

The energy transition will have significant mineral demands and there is growing interest in recovering critical metals, including rare earth elements (REE), from secondary sources in aqueous and sedimentary environments. However, the role of clays in REE transport and deposition in these settings remains understudied. This work investigated REE adsorption to the clay minerals illite and kaolinite through pH adsorption experiments and extended X-ray absorption fine structure (EXAFS). Clay type, pH, and ionic strength (IS) affected adsorption, with decreased adsorption under acidic pH and elevated IS. Illite had a higher adsorption capacity than kaolinite; however, >95% adsorption was achieved at pH ∼7.5 regardless of IS or clay. These results were used to develop a surface complexation model with the derived binding constants used to predict REE speciation in the presence of competing sorbents. This demonstrated that clays become increasingly important as pH increases, and EXAFS modeling showed that REE can exist as both inner- and outer-sphere complexes. Together, this indicated that clays can be an important control on the transport and enrichment of REE in sedimentary systems. These findings can be applied to identify settings to target for resource extraction or to predict REE transport and fate as a contaminant.


Assuntos
Argila , Metais Terras Raras , Minerais , Adsorção , Metais Terras Raras/química , Argila/química , Minerais/química , Concentração de Íons de Hidrogênio , Silicatos de Alumínio/química
2.
J Hazard Mater ; 470: 134193, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38569341

RESUMO

Arsenopyrite and pyrite often coexist in metal deposits and tailings, thus simultaneous bioleaching of both sulfides has economic (as well as environmental) significance. Important targets in bio-oxidation operations are high solubilization rates and minimized accumulation of Fe(III)/As-bearing secondary products. This study investigated the role of pyrite bioleaching in the enhancement of arsenopyrite dissolution. At a pyrite to arsenopyrite mass ratio of 1:1, 93.6% of As and 93.0% of Fe were solubilized. The results show that pyrite bio-oxidation can promote arsenopyrite dissolution, enhance S0 bio-oxidation, and inhibit the formation of jarosites, tooeleite, and amorphous ferric arsenate. The dry weight of the pyrite & arsenopyrite residue was reduced by 95.1% after bioleaching, compared to the initial load, while only 5% weight loss was observed when pyrite was absent. A biofilm was formed on the arsenopyrite surface in the presence of pyrite, while a dense passivation layer was observed in the absence of pyrite. As(III) (as As2O3) was a dominant As species in the pyrite & arsenopyrite residue. Novel and detailed findings are presented on arsenopyrite bio-dissolution in the presence of pyrite, and the presented approach could contribute to the development of novel cost-effective extractive bioprocesses. ENVIRONMENTAL IMPLICATION: The oxidation of arsenopyrite presents significant environmental hazards, as it can contribute to acid mine drainage generation and arsenic mobilization from sulfidic mine wastes. Bioleaching is a proven cost-effective and environmentally friendly extractive technology, which has been applied for decades in metal recovery from minerals or tailings. In this work, efficient extraction of arsenic from arsenopyrite bioleaching was presented through coupling the process with bio-oxidation of pyrite, resulting in lowered accumulation of hazardous and metastable Fe(III)/As-bearing secondary phases. The results could help improve current biomining operations and/or contribute to the development of novel cost-effective bioprocesses for metal extraction.


Assuntos
Arsenicais , Compostos de Ferro , Ferro , Minerais , Sulfetos , Sulfetos/química , Ferro/química , Arsenicais/química , Cinética , Minerais/química , Compostos de Ferro/química , Oxirredução , Solubilidade , Arsênio/química , Biofilmes , Acidithiobacillus/metabolismo
3.
Environ Sci Pollut Res Int ; 31(17): 25342-25355, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38472574

RESUMO

We investigated the structural changes in clay minerals after Cs adsorption and understood their low desorption efficiency using an ion-exchanger. We focused on the role of interlayers in Cs adsorption and desorption in 2:1 clay minerals, namely illite, hydrobiotite, and montmorillonite, using batch experiments and XRD and EXAFS analyses. The adsorption characteristics of the clay minerals were analyzed using cation exchange capacity (CEC), maximum adsorption isotherms (Qmax), and radiocesium interception potential (RIP) experiments. Although illite showed a low CEC value, it exhibited high selectivity for Cs with a relatively high RIP/CEC ratio. The Cs desorption efficiency after treatment with a NaCl ion exchanger was the highest for illite (74.3%), followed by hydrobiotite (45.5%) and montmorillonite (30.3%); thus, Cs adsorbed onto planar sites, rather than on interlayers or frayed edge sites (FESs), is easily desorbed. After NaCl treatment, XRD analysis showed that the low desorption efficiency was due to the collapse of the interlayer-fixed Cs, which tightly narrowed the interlayers' hydrobiotite due to the ion exchange of divalent cations (Mg2+ or Ca2+) into the monovalent cation (Na+). Moreover, EXAFS analysis showed that hydrobiotite formed inner-sphere structures after NaCl desorption, indicating that it was difficult to remove Cs from NaCl desorption due to the collapsed hydrobiotite and montmorillonite interlayers as well as the strong bonding in FESs of illite. In contrast, chelation desorption using oxalic acid effectively dissolved the narrowed interlayers of hydrobiotite (98%) and montmorillonite (85.26%), enhancing the desorption efficiency. Therefore, low desorption efficiency for Cs clays using an ion exchanger was caused by the collapsed interlayer due to the exchange between monovalent cation and divalent cation.


Assuntos
Bentonita , Césio , Argila , Césio/química , Adsorção , Cloreto de Sódio , Minerais/química , Cátions Monovalentes , Silicatos de Alumínio/química
4.
Water Res ; 254: 121412, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38457944

RESUMO

Wetlands export large amounts of dissolved organic carbon (DOC) downstream, which is sensitive to water-table fluctuations (WTFs). While numerous studies have shown that WTFs may decrease wetland DOC via enhancing DOC biodegradation, an alternative pathway, i.e., retention of dissolved organic matter (DOM) by soil minerals, remains under-investigated. Here, we conducted a water-table manipulation experiment on intact soil columns collected from three wetlands with varying contents of reactive metals and clay to examine the potential retention of DOM by soil minerals during WTFs. Using batch sorption experiments and Fourier transform ion cyclotron resonance mass spectrometry, we showed that mineral (bentonite) sorption mainly retained lignin-, aromatic- and humic-like compounds (i.e., adsorbable compounds), in contrast to the preferential removal of protein- and carbohydrate-like compounds during biodegradation. Seven cycles of WTFs significantly decreased the intensity of adsorbable compounds in DOM (by 50 ± 21% based on fluorescence spectroscopy) and DOC adsorbability (by 2-20% and 1.9-12.7 mg L-1 based on batch sorption experiment), to a comparable extent compared with biodegradable compounds (by 11-32% and 1.6-15.2 mg L-1). Furthermore, oxidation of soil ferrous iron [Fe(II)] exerted a major control on the magnitude of potential DOM retention by minerals, while WTFs increased mineral-bound lignin phenols in the Zoige soil with the highest content of lignin phenols and Fe(II). Collectively, these results suggest that DOM retention by minerals likely played an important role in DOC decrease during WTFs, especially in soils with high contents of oxidizable Fe. Our findings support the 'iron gate' mechanism of soil carbon protection by newly-formed Fe (hydr)oxides during water-table decline, and highlight an underappreciated process (mineral-DOM interaction) leading to contrasting fate (i.e., preservation) of DOC in wetlands compared to biodegradation. Mineral retention of wetland DOC hence deserves more attention under changing climate and human activities.


Assuntos
Matéria Orgânica Dissolvida , Solo , Humanos , Solo/química , Áreas Alagadas , Lignina , Minerais/química , Ferro/análise , Água/análise , Fenóis/análise , Compostos Ferrosos , Carbono/química
5.
Environ Sci Pollut Res Int ; 31(17): 24724-24744, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38503955

RESUMO

Clay minerals are abundant on Earth and have been crucial to the advancement of human civilization. The ability of clay minerals to absorb chemicals is frequently utilized to remove hazardous compounds from aquatic environments. Moreover, clay-based adsorbent products are both environmentally acceptable and affordable. This study provides an overview of advances in clay minerals in the field of groundwater remediation and related predictions. The existing literature was examined using data and information aggregation approaches. Keyword clustering analysis of the relevant literature revealed that clay minerals are associated with groundwater utilization and soil pollution remediation. Principal component analysis was used to assess the relationships among clay mineral modification methods, pollutant properties, and the Langmuir adsorption capacity (Qmax). The results demonstrated that pollutant properties affect the Qmax of pollutants adsorbed by clay minerals. Systematic cluster analysis was utilized to classify the collected data and investigate the relationships. The pollution adsorption mechanism of the unique structure of clay minerals was investigated based on the characterization results. Modified clay minerals exhibited changes in surface functional groups, internal structure, and pHpzc. This review provides a summary of recent clay-based materials and their applications in groundwater remediation, as well as discussions of their challenges and future prospects.


Assuntos
Poluentes Ambientais , Água Subterrânea , Humanos , Argila/química , Minerais/química , Solo/química , Adsorção
6.
Astrobiology ; 24(2): 138-150, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38393829

RESUMO

Most of the chemical and physical interactions of interest to the astrobiology community are influenced by the mineralogy of the systems under consideration. Often, this mineralogy occurs in sediment or sediment-like aqueous microenvironments in which the early minerals differ dramatically from the mature version that results from a long diagenesis, which are tied to complex interactions of pH, redox state, concentration, and temperature. This interconnectedness is difficult to reproduce in a laboratory setting yet is essential to understanding how the physical and chemical demands of living systems alter and are altered by their geological context. We present a facile means for producing precipitated mineral analogues within a microchannel and demonstrate its analytical efficacy through instrumental and modeling techniques. We show that amorphous, early-stage analogues of iron sulfide, iron carbonate, and iron phosphate can be formed at the boundary between flowing solutions, modeled on the microscale, and analyzed by standard instrumental techniques such as scanning electron microscopy/energy-dispersive spectroscopy, X-ray photoelectron spectroscopy, and Raman spectroscopy.


Assuntos
Compostos Ferrosos , Minerais , Fosfatos , Minerais/química , Carbonatos/análise , Ferro/química
7.
J R Soc Interface ; 21(211): 20230632, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38378136

RESUMO

Molecular assembly indices, which measure the number of unique sequential steps theoretically required to construct a three-dimensional molecule from its constituent atomic bonds, have been proposed as potential biosignatures. A central hypothesis of assembly theory is that any molecule with an assembly index ≥15 found in significant local concentrations represents an unambiguous sign of life. We show that abiotic molecule-like heteropolyanions, which assemble in aqueous solution as precursors to some mineral crystals, range in molecular assembly indices from 2 for H2CO3 or Si(OH)4 groups to as large as 21 for the most complex known molecule-like subunits in the rare minerals ewingite and ilmajokite. Therefore, values of molecular assembly indices ≥15 do not represent unambiguous biosignatures.


Assuntos
Minerais , Água , Minerais/química , Conformação Molecular
8.
Chemosphere ; 353: 141510, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38401861

RESUMO

Biotite, a phyllosilicate mineral, possesses significant potential for cesium (Cs) adsorption owing to its negative surface charge, specific surface area (SSA), and frayed edge sites (FES). Notably, FES are known to play an important role in the adsorption of Cs. The objectives of this study were to investigate the Cs adsorption capacity and behavior of artificially weathered biotite and identify mineralogical characteristics for the development of an eco-friendly geologically-based Cs adsorbent. Through various analyses, it was confirmed that the FES of biotite was mainly formed by mineral structural distortion during artificial weathering. The Cs adsorption capacity is improved by approximately 39% (from 20.53 to 28.63 mg g-1) when FES are formed in biotite through artificial weathering using a low-concentration acidic solution mixed with hydrogen peroxide (H2O2). Especially, the Cs selectivity in Cs-containing seawater, including high concentrations of cations and organic matter, was significantly enhanced from 203.2 to 1707.6 mL g-1, an increase in removal efficiency from 49.5 to 89.2%. These results indicate that FES of artificially weathered biotite play an essential role in Cs adsorption. Therefore, this simple and economical weathering method, which uses a low-concentration acidic solution mixed with H2O2, can be applied to natural minerals for use as Cs adsorbents.


Assuntos
Silicatos de Alumínio , Césio , Peróxido de Hidrogênio , Césio/química , Minerais/química , Compostos Ferrosos/química , Adsorção
9.
Nat Commun ; 15(1): 1812, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38418834

RESUMO

Calcium carbonate (CaCO3) is abundant on Earth, is a major component of marine biominerals and thus of sedimentary and metamorphic rocks and it plays a major role in the global carbon cycle by storing atmospheric CO2 into solid biominerals. Six crystalline polymorphs of CaCO3 are known-3 anhydrous: calcite, aragonite, vaterite, and 3 hydrated: ikaite (CaCO3·6H2O), monohydrocalcite (CaCO3·1H2O, MHC), and calcium carbonate hemihydrate (CaCO3·½H2O, CCHH). CCHH was recently discovered and characterized, but exclusively as a synthetic material, not as a naturally occurring mineral. Here, analyzing 200 million spectra with Myriad Mapping (MM) of nanoscale mineral phases, we find CCHH and MHC, along with amorphous precursors, on freshly deposited coral skeleton and nacre surfaces, but not on sea urchin spines. Thus, biomineralization pathways are more complex and diverse than previously understood, opening new questions on isotopes and climate. Crystalline precursors are more accessible than amorphous ones to other spectroscopies and diffraction, in natural and bio-inspired materials.


Assuntos
Antozoários , Nácar , Animais , Carbonato de Cálcio/química , Minerais/química , Cristalização
10.
Chemosphere ; 352: 141364, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38336034

RESUMO

Diverse paths generated by reactive oxygen species (ROS) can mediate contaminant transformation and fate in the soil/aquatic environments. However, the pathways for ROS production upon the oxygenation of redox-active ferrous iron minerals are underappreciated. Ferrihydrite (Fh) can be reduced to produce Fe(II) by Shewanella oneidensis MR-1, a representative strain of dissimilatory iron-reducing bacteria (DIRB). The microbial reaction formed a spent Fh product named mr-Fh that contained Fe(II). Material properties of mr-Fh were characterized with X-ray diffraction (XRD), scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS). Magnetite could be observed in all mr-Fh samples produced over 1-day incubation, which might greatly favor the Fe(II) oxygenation process to produce hydroxyl radical (•OH). The maximum amount of dissolved Fe(II) can reach 1.1 mM derived from added 1 g/L Fh together with glucose as a carbon source, much higher than the 0.5 mM generated in the case of the Luria-Bertani carbon source. This may confirm that MR-1 can effectively reduce Fh and produce biogenetic Fe(II). Furthermore, the oxygenation of Fe(II) on the mr-Fh surface can produce abundant ROS, wherein the maximum cumulative •OH content is raised to about 120 µM within 48 h at pH 5, but it is decreased to about 100 µM at pH 7 for the case of MR-1/Fh system after a 7-day incubation. Thus, MR-1-mediated Fh reduction is a critical link to enhance ROS production, and the •OH species is among them the predominant form. XPS analysis proves that a conservable amount of Fe(II) species is subject to adsorption onto mr-Fh. Here, MR-1-mediated ROS production is highly dependent on the redox activity of the form Fe(II), which should be the counterpart presented as the adsorbed Fe(II) on surfaces. Hence, our study provides new insights into understanding the mechanisms that can significantly govern ROS generation in the redox-oscillation environment.


Assuntos
Compostos Férricos , Shewanella , Espécies Reativas de Oxigênio/metabolismo , Compostos Férricos/química , Minerais/química , Ferro/química , Oxirredução , Shewanella/metabolismo , Óxido Ferroso-Férrico/metabolismo , Carbono/metabolismo
11.
Environ Sci Process Impacts ; 26(3): 632-643, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38362760

RESUMO

Arsenic and silica are known inhibitors of the crystallization of iron minerals from poorly ordered precursor phases. However, little is known about the effects of co-existing As and Si on the crystallization and long-term stability of mixed-valence Fe minerals such as green rust (GR). GR usually forms in anoxic, Fe2+-rich, near-neutral pH environments, where they influence the speciation and mobility of trace elements, nutrients and contaminants. In this work, the Fe2+-induced transformation of As- and/or Si-bearing ferrihydrite (FHY) was monitored at pH 8 ([As]initial = 100 µM, Si/As = 10) over 720 h. Our results showed that in the presence of As(III) + Si or As(V) + Si, GR sulfate (GRSO4) formation from FHY was up to four times slower compared to single species system containing only As(III), As(V) or Si. Co-existing As(III) + Si and As(V) + Si also inhibited GRSO4 transformation to magnetite, contrary to systems with only Si or As(V). Overall, our findings demonstrate the synergistic inhibitory effect of co-existing Si on the crystallization and solid-phase stability of As-bearing GRSO4, establishing an inhibitory effect ladder: As(III) + Si > As(V) + Si > As(III) > Si > As(V). This further highlights the importance of GR in potentially controlling the fate and mobility of As in ferruginous, Si-rich groundwater and sediments such as those in South and Southeast Asia.


Assuntos
Arsênio , Arsênio/química , Dióxido de Silício , Cristalização , Oxirredução , Compostos Férricos/química , Minerais/química
12.
J Appl Genet ; 65(2): 375-381, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38286942

RESUMO

Mineral composition in milk can affect its nutritional as well as physio-chemical properties of milk and is considered an important trait in the evaluation of milk quality. The composition and concentration of milk minerals could be altered with natural source of variation including nutrition and genetics. The effect of diet on milk minerals is well studied. However, genetic effects on the milk minerals have recently gained the attention. This review provides an overview of the genetic variation of milk minerals, and the genomic regions associated with mineral concentration in the milk are also discussed. The difference of milk minerals between breeds and the genetic parameters including heritability estimates and correlation among minerals indicates that milk minerals are under strong genetic control. Recently, the genome-wide association study (GWAS) has explored several regions associated with milk minerals and thus provides a new genetic source for improving the milk quality through genomics-assisted breeding. Hence, a combination of the qualitative and molecular approaches can be exploited to improving the nutritional quality of cattle milk in terms of its mineral composition.


Assuntos
Estudo de Associação Genômica Ampla , Leite , Bovinos/genética , Animais , Feminino , Leite/química , Estudo de Associação Genômica Ampla/veterinária , Minerais/análise , Minerais/química , Fenótipo , Dieta/veterinária , Lactação
13.
J Environ Manage ; 353: 120168, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38278111

RESUMO

Arsenic (As)-immobilizing iron (Fe)-manganese (Mn) minerals (AFMM) represent potential As sinks in As-enriched groundwater environments. The process and mechanisms governing As bio-leaching from AFMM through interaction with reducing bacteria, however, remain poorly delineated. This study examined the transformation and release of As from AFMM with varying Mn/Fe molar ratios (0:1, 1:5, 1:3, and 1:1) in the presence of As(V)-reducing bacteria specifically Shewanella putrefaciens CN32. Notably, strain CN32 significantly facilitated the bio-reduction of As(V), Fe(III), and Mn(IV) in AFMM. In systems with Mn/Fe molar ratios of 1:5, 1:3, and 1:1, As bio-reduction decreased by 28%, 34%, and 47%, respectively, compared to the system with a 0:1 ratio. This Mn-induced inhibition of Fe/As bio-reduction was linked to several concurrent factors: preferential Mn bio-reduction, reoxidation of resultant Fe(II)/As(III) due to Mn components, and As adsorption onto emergent Fe precipitates. Both the reductive dissolution of AFMM and the bio-reduction of As(V) predominantly controlled As bio-release. Structural equation models indicated that reducing bacteria destabilize natural As sinks more through As reduction than through Mn(II) release, Fe reduction, or Fe(II) release. Systems with Mn/Fe molar ratios of 1:5, 1:3, and 1:1 showed a decrease in As bio-release by 24%, 41%, and 59%, respectively, relative to the 0:1 system. The observed suppression of As bioleaching was ascribed to both the inhibition of As/Fe bio-reduction by Mn components and the immobilization of As by freshly generated Fe precipitates. These insights into the constraining effect of Mn on the biotransformation and bioleaching of As from AFMM are crucial for grasping the long-term stability of natural As sinks in groundwater, and enhance strategies for in-situ As stabilization in As-afflicted aquifers through Nature-Based Solutions.


Assuntos
Arsênio , Água Subterrânea , Poluentes Químicos da Água , Manganês/análise , Arsênio/química , Compostos Férricos/química , Minerais/química , Água Subterrânea/química , Bactérias , Compostos Ferrosos , Oxirredução , Poluentes Químicos da Água/química
14.
J Environ Manage ; 353: 120179, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38295641

RESUMO

Natural soil minerals often contain numerous impurities, resulting in comparatively lower catalytic activity. Tropical soils are viewed as poor from soil organic matter, cations, and anions, which are considered the main impurities in the soil that are restricted to utilizing natural minerals as a catalyst. In this regard, the dissolved iron and hematite crystals that presented naturally in tropical soil were evaluated to activate oxidants and degrade pyrene. The optimum results obtained in this study were 73 %, and the rate constant was 0.0553 h-1 under experimental conditions [pyrene] = 300 mg/50 g, pH = 7, T = 55 °C, airflow = 260 mL/min, [Persulfate (PS)] = 1.0 g/L, and humic acid (HA) ( % w/w) = 0.5 %. The soil characterization analysis after the remediation process showed an increase in moieties and cracks of the soil aggregate, and a decline in the iron and aluminium contents. The scavengers test revealed that both SO4•- and O2•- were responsible for the pyrene degradation, while HO• had a minor role in the degradation process. In addition, the monitoring of by-products, degradation pathways, and toxicity assessment were also investigated. This system is considered an efficient, green method, and could provide a step forward to develop low-cost soil remediation for full-scale implementation.


Assuntos
Ferro , Poluentes do Solo , Ferro/química , Solo/química , Poluentes do Solo/química , Minerais/química , Pirenos , Oxidantes , Oxirredução
15.
Waste Manag ; 175: 62-72, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38171077

RESUMO

CO2 mineral sequestration using alkaline solid waste (ASW) is a promising strategy for synergistically reducing CO2 emissions and reusing industrial waste. However, improvement the carbonation degree still remains challenges due to the sluggish leaching rate of Ca/Mg ion at low pH. To the issues, this study proposed an amine-mediated CO2 absorption and mineralization process with six common ASWs, as well an ecological utilization route of CO2-ASW productions. Experimental results indicated that calcium carbide slag (CS) had greater CO2 mineralization capacity (86.2 g-CO2/kg-CS) than other ASWs, while stirring rate and particle size played a more important role during CO2 capture. Amine-mediated CO2 capture was verified to be more excellent with steel slag (SS) as mineral medium. When the MEA concentration was increased to 2 mol/L, the extraction efficiency of Ca2+ was increased by 35 %, leaded to the CO2 removal efficiency significantly promoted from 49 % to 92 %. The characterization of structural morphology referred spherical aragonite or needle-bar calcite was dominant for the porous mineralization products (30.6 m2/g). High germination index of pea seed (112.1 % at a dose of 10 g/L) inferred the negligible toxicological effects of tiny MEA residue over SS mineralization products, after centrifugally washing treatment. Pea seeds cultivated with mineralized products after centrifugal washing can achieve a growth rate of about 4 mm/d. Overall, this work provides a feasible route to apply the porous CO2-ASWs production into water conservation in arid and sandy land.


Assuntos
Dióxido de Carbono , Resíduos Sólidos , Dióxido de Carbono/química , Carbonato de Cálcio/química , Resíduos Industriais/análise , Minerais/química , Aço/química , Aminas
16.
Environ Sci Technol ; 58(3): 1731-1740, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38206803

RESUMO

Perfluorooctanesulfonate (PFOS) has become a major concern due to its widespread occurrence in the environment and severe toxic effects. In this study, we investigate PFOS sorption on goethite surfaces under different water chemistry conditions to understand the impact of variable groundwater chemistry. Our investigation is based on multiple lines of evidence, including (i) a series of sorption experiments with varying pH, ionic strength, and PFOS initial concentration, (ii) IR spectroscopy analysis, and (iii) surface complexation modeling. PFOS was found to bind to goethite through a strong hydrogen-bonded (HB) complex and a weaker outer-sphere complex involving Na+ coadsorption (OS-Na+). The pH and ionic strength of the solution had a nontrivial impact on the speciation and coexistence of these surface complexes. Acidic conditions and low ionic strength promoted hydrogen bonding between the sulfonate headgroup and protonated hydroxo surface sites. Higher electrolyte concentrations and pH values hindered the formation of strong hydrogen bonds upon the formation of a ternary PFOS-Na+-goethite outer-sphere complex. The findings of this study illuminate the key control of variable solution chemistry on PFOS adsorption to mineral surfaces and the importance to develop surface complexation models integrating mechanistic insights for the accurate prediction of PFOS mobility and environmental fate.


Assuntos
Ácidos Alcanossulfônicos , Fluorocarbonos , Compostos de Ferro , Água/química , Minerais/química , Ácidos Alcanossulfônicos/química , Compostos de Ferro/química , Adsorção , Concentração de Íons de Hidrogênio
17.
Environ Sci Technol ; 58(4): 2007-2016, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38232091

RESUMO

The dynamics of trace metals at mineral surfaces influence their fate and bioaccessibility in the environment. Trace metals on iron (oxyhydr)oxide surfaces display adsorption-desorption hysteresis, suggesting entrapment after aging. However, desorption experiments may perturb the coordination environment of adsorbed metals, the distribution of labile Fe(III), and mineral aggregation properties, influencing the interpretation of labile metal fractions. In this study, we investigated irreversible binding of nickel, zinc, and cadmium to goethite after aging times of 2-120 days using isotope exchange. Dissolved and adsorbed metal pools exchange rapidly, with half times <90 min, but all metals display a solid-associated fraction inaccessible to isotope exchange. The size of this nonlabile pool is the largest for nickel, with the smallest ionic radius, and the smallest for cadmium, with the largest ionic radius. Spectroscopy and extractions suggest that the irreversibly bound metals are incorporated in the goethite structure. Rapid exchange of labile solid-associated metals with solution demonstrates that adsorbed metals can sustain the dissolved pool in response to biological uptake or fluid flow. Trace metal fractions that irreversibly bind following adsorption provide a contaminant sequestration pathway, limit the availability of micronutrients, and record metal isotope signatures of environmental processes.


Assuntos
Compostos de Ferro , Níquel , Oligoelementos , Níquel/química , Compostos Férricos/química , Cádmio , Minerais/química , Íons , Isótopos , Adsorção
18.
Environ Sci Technol ; 58(4): 2078-2088, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38235676

RESUMO

Lake sediments connection to the biogeochemical cycling of phosphorus (P) and carbon (C) influences streamwater quality. However, it is unclear whether and how the type of sediment controls P and C cycling in water. Here, the adsorption behavior of montmorillonite (Mt) with different interlayer cations (Na+, Ca2+, or Fe3+) on dissolved organic matter (DOM) and P was investigated to understand the role of Mt in regulating the organic carbon-to-phosphate (OC/P) ratio within freshwater systems. The adsorption capacity of Fe-Mt for P was 3.2-fold higher than that of Ca-Mt, while it was 1/3 lower for DOM. This dissimilarity in adsorption led to an increased OC/P in Fe-Mt-dominated water and a decreased OC/P in Ca-Mt-dominated water. Moreover, an in situ atomic force microscope and high-resolution mass spectrometry revealed molecular fractionation mechanisms and adsorptive processes. It was observed that DOM inhibited the nucleation and crystallization processes of P on the Mt surface, and P affected the binding energy of DOM on Mt through competitive adsorption, thereby governing the interfacial P/DOM dynamics on Mt substrates at a molecular level. These findings have important implications for water quality management, by highlighting the role of clay minerals as nutrient sinks and providing new strategies for controlling P and C dynamics in freshwater systems.


Assuntos
Matéria Orgânica Dissolvida , Fósforo , Argila , Adsorção , Minerais/química , Lagos/química , Carbono
19.
Environ Sci Technol ; 58(5): 2313-2322, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38266164

RESUMO

Mineral adsorption-induced molecular fractionation of dissolved organic matter (DOM) affects the composition of both DOM and OM adsorbed and thus stabilized by minerals. However, it remains unclear what mineral properties control the magnitude of DOM fractionation. Using a combined technique approach that leverages the molecular composition identified by ultrahigh resolution 21 T Fourier transform ion cyclotron resonance mass spectrometry and adsorption isotherms, we catalogue the compositional differences that occur at the molecular level that results in fractionation due to adsorption of Suwannee River fulvic acid on aluminum (Al) and iron (Fe) oxides and a phyllosilicate (allophane) species of contrasting properties. The minerals of high solubility (i.e., amorphous Al oxide, boehmite, and allophane) exhibited much stronger DOM fractionation capabilities than the minerals of low solubility (i.e., gibbsite and Fe oxides). Specifically, the former released Al3+ to solution (0.05-0.35 mM) that formed complexes with OM and likely reduced the surface hydrophobicity of the mineral-OM assemblage, thus increasing the preference for adsorbing polar DOM molecules. The impacts of mineral solubility are exacerbated by the fact that interactions with DOM also enhance metal release from minerals. For sparsely soluble minerals, the mineral surface hydrophobicity, instead of solubility, appeared to be the primary control of their DOM fractionation power. Other chemical properties seemed less directly relevant than surface hydrophobicity and solubility in fractionating DOM.


Assuntos
Matéria Orgânica Dissolvida , Minerais , Adsorção , Solubilidade , Minerais/química , Alumínio , Óxidos
20.
Environ Pollut ; 344: 123318, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38218545

RESUMO

Hematite is an iron oxide commonly found in terrestrial environments and plays an essential role in controlling the migration of heavy metal(loid)s in groundwater and sediments. Although defects were shown to exist both in naturally occurring and laboratory-synthesized hematite, their influences on the immobilization of heavy metal(loid)s remain poorly understood. In this study, hematite samples with tunable vacancy defect concentrations were synthesized to evaluate their adsorption capacities for the cation Pb(II) and for the oxyanion As(V). The defects in hematite were characterized using XRD, TEM-EDS mapping, position annihilation lifetime spectroscopy, and XAS. The surface charge characteristics in defective hematite were investigated using zeta potential measurements. We found that Fe vacancies were the primary defect type in the hematite structure. Batch experiments confirmed that Fe vacancies in hematite promoted As(V) adsorption, while they decreased Pb(II) adsorption. The reason for the opposite effects of Fe vacancies on Pb(II) and As(V) immobilization was investigated using DFT calculations and EXAFS analysis. The results revealed that Fe vacancies altered As-Fe coordination from a monodentate to a bidentate complex and increased the length of the Pb-Fe bond on the hematite surface, thereby leading to an increase in As(V) bonding strength, while decreasing Pb(II) adsorption affinity. In addition, the zeta potential analysis demonstrated that the presence of Fe vacancies led to an increase in the isoelectric point (IEP) of hematite samples, which therefore decreased the attraction for the cation Pb(II) and increased the attraction for the oxyanion As(V). The combination of these two effects caused by defects contributed to the contrasting difference between cation Pb(II) and oxyanion As(V) immobilization by defective hematite. Our study therefore provides new insights into the migration and fate of toxic heavy metal(loid)s controlled by iron minerals.


Assuntos
Compostos Férricos , Chumbo , Compostos Férricos/química , Ferro/química , Minerais/química , Adsorção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...